OcNOS-SP : Segment Routing Guide : Segment Routing Configuration Guide : Overview
Overview
Source routing is a technique where the sender of a packet can partially or completely specify a route in a network through which a packet is sent. Segment routing is a form of source routing where nodes and links are represented as segments. The path that a particular packet needs to traverse is represented by one or more segments. The list of segments is inserted into the packet itself and each segment in the path represents a particular node or an adjacency through which the packet needs to pass. The OcNOS implementation of segment routing is based on draft-ietf-spring-segment-routing-09.
A segment can be any instruction, topological or service based.
A segment can be
Local to an SR node or global within an SR domain.
IGP-based forwarding construct
BGP-based forwarding construct
A segment may be associated with topological instructions.
For example:
A topological local segment may instruct the node to forward the packet via specific outgoing interface.
A topological global segment may instruct the SR domain to forward the packet via specific path to destination.
A segment may be associated with a service instruction.
Packet should be processed by a container or Virtual Machine (VM) associated with the segment
They are importantly two kinds of segments.
Prefix Segment
It is used to forward the packet along the shortest path to reach the prefix. When the prefix is that of the loopback interface which identifies the node and it's called a Node Segment. Prefix Segments are global segments and all the nodes in SR domain has the forwarding entry available for the prefix segment advertised.
Adjacency Segment
It is used to forward the packet via a specific link to a particular neighbor. It's generally a local segment and only the node which holds the adjacency has the forwarding entry available for that adjacency.
OcNOS uses prefix segments which forward a packet along the shortest path to reach the prefix. Prefix segments are global and all the nodes in the segment routing domain advertise the forwarding entry for the prefix segment. When a prefix is for a loopback interface that identifies a node, it is called a node segment.
Segment routing does not require any additional control plane protocol and is implemented by extending an existing interior gateway protocol (IGP) such as OSPF and ISIS. Segment routing replaces MPLS control plane protocols such as LDP or RSVP.
In OcNOS, MPLS clients such as LDP and RSVP create FEC-to-NHLFE and Incoming Label Map (FTN/ILM) entries by signaling within the MPLS domain. After this, the entries are installed into the MPLS RIB hosted by NSM.
The segment routing framework reuses the existing MPLS framework with OSPF and ISIS which acts as an MPLS client. OSPF and ISIS with segment routing extensions exchanges the segment information within the segment routing domain. These segments are converted to MPLS FTN/ILM entries using a library. After this, the entries are installed into the same MPLS RIB hosted by NSM.
OcNOS supports ISIS and OSPF extensions to achieve segment routing via the MPLS data plane. OcNOS supports prefix segments and adjacency segments.
In segment routing, the path states are maintained only at the ingress node and the path to follow is pushed into the packet itself. The transit and egress nodes do not maintain state for each path traversing through them. The configuration overhead is less than traditional MPLS.
The major benefits of segment routing are as follows.
1. Simplified
When applied to the MPLS data plane, Segment Routing offers the ability to tunnel MPLS services (VPN, VPLS, and VPWS) from an ingress provider edge to an egress provider edge without any other protocol than an IGP (ISIS or OSPF).
Simpler operation without separate protocols for label distribution (for example, no LDP or RSVP)
No complex LDP or IGP synchronization to troubleshoot.
2. Ready for SDN
Segment Routing is a compelling architecture that supports Software-Defined Network (SDN) and is the foundation for Application Engineered Routing (AER).
It strikes a balance between network-based distributed intelligence, such as automatic link and node protection, and controller-based centralized intelligence, such as traffic optimization
3. Scalable
Avoid thousands of labels in LDP database.
Avoid thousands of MPLS Traffic Engineering LSPs in the network.
Avoid thousands of tunnels to configure.
4. Supports Fast Reroute (FRR)
The traditional LFA and RLFA technologies have topology constraints that mean they are unable to implement 100% fault protection
Segment routing provides Topology Independent Loop Free Alternate (TI-LFA) as its main solution for FRR.
In case of link or node failures in a network, MPLS uses the FRR mechanism for convergence
Last modified date: 06/27/2023